
BMW
E60
LCI Dynamic Cruise
Control Retrofit S544A

Cruise Control Stalk: 61 31 6 951 352

Steering Column Lower trim: 61316947773

Steering Column Front trim: 61316947778

Coding Cable: D-Can/K-Line Cable or ICOM

INTRODUCTION

Some BMW E6x LCI were factory-lacking a
standard option, which is Cruise Control,
even some 530i and 630i models. For E6x
Pre-LCI, the cruise control retrofit was
straightforward (Changing the Steering
column Unit with another unit that has the
Cruise control switch, VO-coding CAS and
LM modules and coding the car to default).
Starting from LCI (March 2007 onwards),
officially in most cases, the retrofit requires
replacing the whole instrument cluster with a
version that supports Dynamic Cruise
Control. Yes, the standard Cruise Control
(Option S540A) is no longer possible,
instead option S544A was implemented as
standard.

However, for a E6x LCI that came without
cruise control, retrofit of DCC (Dynamic
Cruise Control) without replacing the
instrument cluster is still possible by
modifying the hard-coded data in the
instrument cluster factory-settings (Settings
that cannot be modified by standard coding
tools).
One needs to check whether the current
instrument cluster has a high-variant (Cruise
control led pointer around speedometer ring
is present) or a low-variant (led pointer
around speedometer ring is absent). A
KI-Test (Instrument Self-test, through the
hidden menu or through INPA, ISTA+, Tool32
...) can reveal which variant it is.
However, some parts are still needed.
Below is the practical procedure for this
retrofit.

1/5 - October 2019 <https://bmw.opentika.ovh> kyoshuu.madani@gmail.com

https://bmw.opentika.ovh

THE CAR’S HARDWARE

The subject car came with a low-variant
instrument cluster and a high-variant
steering column unit:

Labeled
BMW
Part

BMW Part
Number

ZUSB

SZL ? 9204505 9204506

KOMBI 9153759 9196108 9194893

ADD VEHICLE ORDER S544A

The tool needed is NCSExpert.
- Open NCSExpert and load an Expert profile
(Manipulation must be disabled)

- Step 1: Read the car using CAS ECU.
- Step 2: Choose Job ‘Enter FA’ and

enter the option $544 in the Attribute
field and click ‘Add’.

- Step 3: Once done, click OK and
click ‘back’ and change Job to
‘FA_write’, hence execute the job.
Repeat this process (Step 3) for LMA
ECU, by changing ECU from CAS to
LMA and executing ‘FA_write’ job.

Up to this stage, the Option S544A was
written to both ECUs CAS and LMA.
INFO: CAS ECU contains VO information.
(Vehicle Order) which is redundant onto LMA
Ecu.

2/5 - October 2019 <https://bmw.opentika.ovh> kyoshuu.madani@gmail.com

https://bmw.opentika.ovh

- Warning: Do not close NCSExpert or
change the profile.

You can code the car with Ignition off. But
pay attention, the car can go on Sleep mode.
Also, make sure the battery has at least 12.2
Volts.

CODE THE CAR TO DEFAULT

- Delete errors, using INPA or ISTA+ or
any OBD scanner compatible with
BMW.

Before continuing, make sure the option
S544 was added to your VO. You can use
NCSExpert or ISTA+ (Vehicle Information).

- Step 1: In NCSExpert change the Job
to ‘sg_codieren’.

- Step 2: Click on ‘Process ECU’ and
choose SZL Ecu.

- Step 3: Execute the job.
- Repeat Step 2 and 3 for the following

ECUs: KOMBI (KMBI), DSC (EHB3)..

Up to now, if you plug the car to INPA or
ISTA and check for errors, you should find a
new generated error that says:

DSC: DCC: Error in interface to
Instrument cluster.

Which is pretty logical, since the DSC is
trying to communicate with the DCC
interface in the instrument cluster but this
latter is still deactivated.

HACK INSTRUMENT CLUSTER

- Delete errors.
- We use BMW Tool32 and load SGBD

‘KOMB60’ (In C:\EDIABAS\ECU).
- We select the job ‘c_c_lesen’.
- In ‘Arguments’ field, check the DATA

checkbox and paste the following
hexadecimal byte code: 01 01 01
01 00 00 00 00 00 00 00 00 00
17 00 00 00 00 01 31 00 FF FF
FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF
FF 03

- Double-click on the job ‘c_c_lesen’.
- In the Results page, copy the

CODIER_DATEN byte code. In our
case, the result was: 01 01 01 01 00
00 00 00 00 00 00 00 00 17 00 00
00 00 01 31 00 8D 40 01 00 A0 00
18 01 90 01 08 02 26 01 36 14 98
22 FB 30 5D 3F F8 03

- The result below may differ from car
to another.

3/5 - October 2019 <https://bmw.opentika.ovh> kyoshuu.madani@gmail.com

https://bmw.opentika.ovh

- Copy and save the result below on
something safe (Google Drive, USB
Key, Email ...etc). In case things go
wrong, the original CODIER_DATEN
byte coded would serve to restore
default settings.

As you can see, the FF buffer is an output
buffer that was replaced by the coding data
of our instrument cluster and the byte
highlighted in red (F8) is the cruise control
pointer.
Just for information the instrument cluster
coding data is addressed as follows:

● 0x3100 - Speedometer
● 0x3101 - Cruise Control Marker
● 0x3102 - Fuel gauge
● 0x3103 - RPM gauge
● 0x3104 - Redline Marker
● 0x3105 - Oil Temp / Instant MPG

So what is that F8?

It is simply the byte value that decides
whether DCC is active or not; specifically the
pointer ACC_ZEIGER_VERBAUT (Cruise
control pointer installed?).

Hex Decimal Binary

DCC
disabled

F8 248
(even)

11111000

DCC
enabled

F9 249
(odd)

11111001

So as illustrated in the table below, we’re
going to change F8 to F9 in order to activate
cruise control, thus, we modify the

CODIER_DATEN block with the modified
value and write it using Tool32:

- 01 01 01 01 00 00 00 00 00 00 00
00 00 17 00 00 00 00 01 31 00 8D
40 01 00 A0 00 18 01 90 01 08 02
26 01 36 14 98 22 FB 30 5D 3F F9
03

But before we write the new code, we need
to calculate its checksum. Otherwise we will
get errors later.

- In Tool32, we select the job
‘c_checksumme’.

- We paste the modified code below
and check the DATA checkbox and
double-click on ‘c_checksumme’

- In the results window, we should get
a new CODIER_DATEN code. Copy it.

In our case, here is a comparison between
he modified code with the old and new
checksum:

Modified code before checksum calculation:

0101010100000000000000000017000000
000131008D400100A00018019001080226
0136149822FB305D3FF903

After Checksum calculation:

0101010100000000000000000017000000
000131008C400100A000180190010802260
136149822FB305D3FF903

The code in green is the code we are going
to write in our instrument cluster:

- Still in Tool32, we select the job
‘c_c_schrieben’

4/5 - October 2019 <https://bmw.opentika.ovh> kyoshuu.madani@gmail.com

https://bmw.opentika.ovh

- We paste the code in green, in the
Arguments field, check DATA
checkbox and double-click on
‘c_c_schrieben’.

- The Status execution of the job
should return OKAY.

- Execute again the job ‘c_c_lesen’ as
described before in order to make
sure the new data has been written
successfully.

Note that the main purpose is to modify the
last part of the binary value from 0 to 1.

RESET INSTRUMENT CLUSTER

Up to now, DCC is activated but we still need
to reset the instrument cluster.

- In Tool32, we select the job
‘steuergeraete_reset’. Nothing on
arguments and DATA checkbox NOT
checked.

- We double-click on
‘steuergeraete_reset’.

The job status must say OKAY and time is
also reset.

SET TIME AND DATE

Use the IDrive (Settings) to set time and date
or Tool32 job ‘sg_reset_ohne_uhr_datum’.

RESULT

NOTES

This procedure worked fine for the subject
car which is a BMW E60 523iA LCI of 2007
and many others.
By following this guide you take full
responsibility. The author of this guide is not
responsible for any consequent damage.

5/5 - October 2019 <https://bmw.opentika.ovh> kyoshuu.madani@gmail.com

https://bmw.opentika.ovh

